Sign-Changing Solutions to Equations of Elliptic Type
نویسندگان
چکیده
منابع مشابه
Sign-changing Solutions to Elliptic Second Order Equations: Glueing a Peak to a Degenerate Critical Manifold
We construct blowing-up sign-changing solutions to some nonlinear critical equations by glueing a standard bubble to a degenerate function. We develop a new method based on analyticity to perform the glueing when the critical manifold of solutions is degenerate and no Bianchi–Egnell type condition holds.
متن کاملA Note on Additional Properties of Sign Changing Solutions to Superlinear Elliptic Equations
We obtain upper bounds for the number of nodal domains of sign changing solutions of semilinear elliptic Dirichlet problems using suitable min-max descriptions. These are consequences of a generalization of Courant’s nodal domain theorem. The solutions need not to be isolated. We also obtain information on the Morse index of solutions and the location of suband supersolutions.
متن کاملMultiple Solutions for Semilinear Elliptic Equations with Sign-changing Potential and Nonlinearity
In this article, we study the multiplicity of solutions for the semilinear elliptic equation −∆u + a(x)u = f(x, u), x ∈ Ω, u = 0, x ∈ ∂Ω, where Ω ⊂ RN (N ≥ 3), the potential a(x) satisfies suitable integrability conditions, and the primitive of the nonlinearity f is of super-quadratic growth near infinity and is allowed to change sign. Our super-quadratic conditions are weaker the usual super-q...
متن کاملMultiple Positive Solutions for Semilinear Elliptic Equations with Sign - Changing Weight Functions
and Applied Analysis 3 In order to describe our main result, we need to define Λ0 ( 2 − q ( p − q‖a‖L∞ ) 2−q / p−2 ( p − 2 ( p − q)‖b ‖Lq∗ ) S p 2−q /2 p−2 q/2 p > 0, 1.3 where ‖a‖L∞ supx∈RNa x , ‖b ‖Lq∗ ∫ RN |b x |qdx 1/q∗ and Sp is the best Sobolev constant for the imbedding of H1 R into L R . Theorem 1.1. Assume that a1 , b1 b2 hold. If λ ∈ 0, q/2 Λ0 , Ea,λb admits at least two positive solu...
متن کاملMultiple Positive Solutions for Singular Elliptic Equations with Concave-Convex Nonlinearities and Sign-Changing Weights
Recommended by Pavel Drabek We study existence and multiplicity of positive solutions for the following Dirichlet equations: −Δu − μ/|x| 2 u λfx|u| q−2 u gx|u| 2 * −2 u in Ω, u 0 on ∂Ω, where 0 ∈ Ω ⊂ R N N ≥ 3 is a bounded domain with smooth boundary ∂Ω, λ > 0, 0 ≤ μ < μ N − 2 2 /4, 2 * 2N/N − 2, 1 ≤ q < 2, and f, g are continuous functions on Ω which are somewhere positive but which may change...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Differential Equations
سال: 2010
ISSN: 1687-9643,1687-9651
DOI: 10.1155/2010/452764